kurvige Straßen - translation to Αγγλικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

kurvige Straßen - translation to Αγγλικά

MULTIPLICATION ALGORITHM
Schönhage-strassen; Schönhage-Strassen multiplication; Schonhage-Strassen algorithm; Schonhage-Strassen multiplication; Schonhage-Strassen; Schonhage Strassen; Schönhage-Strassen; Schönhage Strassen; Schönhage Strassen algorithm; Schönhage algorithm; Schonhage algorithm; Schoenhage Strassen; Schoenhage-Strassen algorithm; Schoenhage-strassen; Schonhage-strassen; Schönhage-Strassen algorithm; Schonhage–Strassen algorithm
  • fast Fourier transform (FFT) method of integer multiplication]]. This figure demonstrates multiplying 1234 &times; 5678 = 7006652 using the simple FFT method. [[Number-theoretic transform]]s in the integers modulo 337 are used, selecting 85 as an 8th root of unity. Base 10 is used in place of base 2<sup>''w''</sup> for illustrative purposes. Schönhage–Strassen improves on this by using negacyclic convolutions.
  • Oberwolfach]], 1979

winding roads         
WIKIMEDIA DISAMBIGUATION PAGE
schlängelnde Straßen, kurvige Straßen
kurvige Straßen      
winding roads, roads that are crooked and indirect

Βικιπαίδεια

Schönhage–Strassen algorithm

The Schönhage–Strassen algorithm is an asymptotically fast multiplication algorithm for large integers, published by Arnold Schönhage and Volker Strassen in 1971. It works by recursively applying number-theoretic transforms (a form of fast Fourier transform) over the integers modulo 2n+1. The run-time bit complexity to multiply two n-digit numbers using the algorithm is O ( n log n log log n ) {\displaystyle O(n\cdot \log n\cdot \log \log n)} in big O notation.

The Schönhage–Strassen algorithm was the asymptotically fastest multiplication method known from 1971 until 2007. It is asymptotically faster than older methods such as Karatsuba and Toom–Cook multiplication, and starts to outperform them in practice for numbers beyond about 10,000 to 100,000 decimal digits. In 2007, Martin Fürer published an algorithm with faster asymptotic complexity. In 2019, David Harvey and Joris van der Hoeven demonstrated that multi-digit multiplication has theoretical O ( n log n ) {\displaystyle O(n\log n)} complexity; however, their algorithm has constant factors which make it impossibly slow for any conceivable practical problem (see galactic algorithm).

Applications of the Schönhage–Strassen algorithm include large computations done for their own sake such as the Great Internet Mersenne Prime Search and approximations of π, as well as practical applications such as Lenstra elliptic curve factorization via Kronecker substitution, which reduces polynomial multiplication to integer multiplication.